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Practice 6 

Topic: Research of special points on the phase plane 

The example     Let a dynamic system is described by a system of equations in 

the state-space: 
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You should define a type of transition process and define what special point 

(stationary point) corresponds the phase portrait of the researched system; show 

geometrical interpretation. 

Algorithm and solution 

 1.  We obtain own numbers of a matrix A: 
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 Hence, the movement of the given dynamic system asymptotically is steady 

across Lyapunov as real parts of roots are negative, i.e. Re λ i(A)<0.    

Geometrical interpretation: 
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Fig. 1- The movement of the given dynamic system asymptotically is steady  

across Lyapunov 
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 The roots of characteristic equation real and negative, therefore, transient 

process is monotonous and steady.  

 In fig. 2 the arrangement of roots of characteristic equation of the researched system 

and the transient process corresponding to them are presented. 

 

  

 

 

 

 

 

 

 

Fig. 2 – Arrangement of roots and the process corresponding to them transient 

process 

In this case the phase portrait corresponds to a special point, stable knot 

(fig.6.12). Here the straight line is a degenerated trajectory  e 
- t

  

 

Fig. 3 – The Special point is a steady node 

Task   Let a dynamic system is described by a system of equations in the state-

space: 

           








Cxy

BuAxx
,                               (*) 

where the matrixes A, B and C are set below by variants. 

You should define a type of transition process and define what special point 

(stationary point) corresponds the phase portrait of the researched system; show 

geometrical interpretation. 
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